Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.

نویسندگان

  • Azadeh Nilghaz
  • Dedy H B Wicaksono
  • Dwi Gustiono
  • Fadzilah Adibah Abdul Majid
  • Eko Supriyanto
  • Mohammed Rafiq Abdul Kadir
چکیده

This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.

In this work, we first report a facile, low-cost and high-throughput method for photolithographical fabrication of microfluidic cloth-based analytical devices (μCADs) by simply using a cotton cloth as a substrate material and employing an inexpensive hydrophobic photoresist laboratory-formulated from commercially available reagents, which allows patterning of reproducible hydrophilic-hydrophobi...

متن کامل

Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.

Here we present a simple and low-cost production method to generate paper-based microfluidic devices with wax for portable bioassay. The wax patterning method we introduced here included three different ways: (i) painting with a wax pen, (ii) printing with an inkjet printer followed by painting with a wax pen, (iii) printing by a wax printer directly. The whole process was easy to operate and c...

متن کامل

Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®.

Microfluidic paper-based analytical devices (μPADs) attract tremendous attention as an economical tool for in-field diagnosis, food safety and environmental monitoring. We innovatively fabricated 2D and 3D μPADs by photolithography-patterning microchannels on a Parafilm® and subsequently embossing them to paper. This truly low-cost, wax printer and cutter plotter independent approach offers the...

متن کامل

High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis

This work demonstrates the fabrication of microfluidic paper-based analytical devices (μPADs) suitable for the analysis of sub-microliter sample volumes. The wax-printing approach widely used for the patterning of paper substrates has been adapted to obtain high-resolution microfluidic structures patterned in filter paper. This has been achieved by replacing the hot plate heating method convent...

متن کامل

Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine.

The first step in curing a disease is being able to detect the disease effectively. Paper-based microfluidic devices are biodegradable and can make diagnosing diseases cost-effective and easy in almost all environments. We created a three-dimesnional (3D) paper device using wax printing fabrication technique and basic principles of origami. This design allows for a versatile fabrication techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2012